4 Proof of Implicit Function Theorem 2020-21

Notation We are looking at functions $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $n>m$. In the proof we will naturally get a decomposition $\mathbb{R}^{n}=\mathbb{R}^{n-m} \times \mathbb{R}^{m}$ and we write $\mathrm{x} \in \mathbb{R}^{n}$ as

$$
\mathbf{x}=\binom{\mathbf{v}}{\mathbf{y}}=\left(\mathbf{v}^{T}, \mathbf{y}^{T}\right)^{T},
$$

with $\mathbf{v} \in \mathbb{R}^{n-m}$ and $\mathbf{y} \in \mathbb{R}^{m}$. This means that $x^{i}=v^{i}$ for $1 \leq i \leq n-m$ while $x^{i}=y^{i-n+m}$ for $n-m+1 \leq i \leq n$.

We have previously stated and looked at consequences for surfaces of the result:

Theorem 1 Implicit Function Theorem. Suppose that $\mathbf{f}: U \rightarrow \mathbb{R}^{m}$ is a C^{1}-function on an open set $U \subseteq \mathbb{R}^{n}$, where $1 \leq m<n$; there exists $\mathbf{p} \in U$ such that $\mathbf{f}(\mathbf{p})=\mathbf{0}$ and the Jacobian matrix Jf(p) has full-rank m.

Suppose that the final m columns of the Jacobian matrix are linearly independent. Write

$$
\mathbf{p}=\binom{\mathbf{p}_{0}}{\mathbf{p}_{1}}
$$

where $\mathbf{p}_{0} \in \mathbb{R}^{n-m}$ and $\mathbf{p}_{1} \in \mathbb{R}^{m}$.
Then there exists

- an open set $V: \mathbf{p}_{0} \in V \subseteq \mathbb{R}^{n-m}$,
- a C^{1}-function $\phi: V \rightarrow \mathbb{R}^{m}$ and
- an open set $W: \mathbf{p} \in W \subseteq U \subseteq \mathbb{R}^{n}$
such for $\mathbf{w} \in W$, written as

$$
\mathbf{w}=\binom{\mathbf{v}}{\mathbf{y}}
$$

with $\mathbf{v} \in \mathbb{R}^{n-m}$ and $\mathbf{y} \in \mathbb{R}^{m}$, then

$$
\mathbf{f}(\mathbf{w})=\mathbf{0} \text { if, and only if, } \mathbf{v} \in V \text { and } \mathbf{y}=\phi(\mathbf{v}) .
$$

Briefly, near a zero other zeros form a surface given by a graph.
The supposition that the final m columns of the Jacobian matrix $J \mathbf{f}(\mathbf{p})$ form an invertible matrix is satisfied in any given situation by, if necessary, a permutation of the coordinates in \mathbb{R}^{n}. See Section 3 Appendix.

But we can go further in demanding that $J \mathbf{f}(\mathbf{p})=\left(A \mid I_{m}\right)$ for some $m \times(n-m)$ matrix A. See Section 3 Appendix.

Idea of proof. Induction on $m \geq 1$, the dimension of the image space.
The base case $m=1$, is Proposition 4 below. In this case we have a scalarvalued function of many variables, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The Jacobian matrix $J \mathbf{f}(\mathbf{p})$ is an $n \times 1$ matrix, and the requirement that it is of full-rank simply means it is non-zero. By permuting the coordinates in \mathbb{R}^{n} if necessary we assume the last entry in $J \mathbf{f}(\mathbf{p})$, i.e. $d_{n} f(\mathbf{p})$, is non-zero.

We wish to reduce to the case of a scalar-valued function of one variable. This is done by looking at f on straight lines $\left(\mathbf{v}^{T}, y\right)^{T}$ where $\mathbf{v} \in \mathbb{R}^{n-1}$ is fixed and $y \in \mathbb{R}$ varies. Then define the scalar-valued function of one variable

$$
f_{\mathbf{v}}(y)=f\left(\binom{\mathbf{v}}{y}\right)
$$

so $f_{\mathbf{v}}: \mathbb{R} \rightarrow \mathbb{R}$ and we can use results from second year Real Analysis. In particular the Intermediate Value Theorem: if $g:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and $g(a)<0<g(b)$ then there exists $c \in(a, b)$ such that $g(c)=0$. The complications in the proof arise from showing that $f_{\mathbf{v}}$ takes both positive and negative values. But once we have shown this we conclude that for each \mathbf{v} there exists $y: f_{\mathbf{v}}(y)=0$. Define the function $\phi_{1}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ by $\phi_{1}(\mathbf{v})=y$.

The inductive step Assume the result of the Implicit Function Theorem holds for all appropriate $\mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m-1}$ whenever $n \geq m-1$.

Let $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, with $n \geq m$. We wish to show that the result of the Implicit Function Theorem holds for \mathbf{f}.

We can write $\mathbf{f}=\left(f^{1}, \ldots, f^{m}\right)^{T}$. Apply Proposition 4 to the last coordinate function $f^{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. This shows that $f^{m}(\mathbf{w})=0$ if and only if $\mathbf{w}=\left(\mathbf{t}^{T}, \phi_{1}(\mathbf{t})\right)^{T}$ for $\mathbf{t} \in \mathbb{R}^{n-1}$ and some function $\phi_{1}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$.

Define $\mathbf{g}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{m-1}$ by its $m-1$ component functions as

$$
g^{i}(\mathbf{t})=f^{i}\left(\binom{\mathbf{t}}{\phi_{1}(\mathbf{t})}\right)
$$

for $1 \leq i \leq m-1$ where $\mathbf{t} \in \mathbb{R}^{n-1}$.
Combining we find that $\mathbf{f}(\mathbf{w})=\mathbf{0}$ iff

$$
\mathbf{w}=\binom{\mathbf{t}}{\phi_{1}(\mathbf{t})} \quad \text { for } \mathbf{t} \in \mathbb{R}^{n-1} \text { and } \mathbf{g}(\mathbf{t})=\mathbf{0} .
$$

In the assumptions of the theorem we are given a point $\mathbf{p}: f(\mathbf{p})=0$. So by what we have just shown, there exists $\mathbf{q} \in \mathbb{R}^{n-1}: \mathbf{p}=\left(\mathbf{q}^{T}, \phi_{1}(\mathbf{q})\right)^{T}$ and $\mathrm{g}(\mathbf{q})=\mathbf{0}$.

Since $\mathbf{g}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{m-1}$, i.e. the dimension of the image space is $m-1$, we would hope to apply the inductive hypothesis to \mathbf{g} at $\mathbf{q} \in \mathbb{R}^{n-1}$. To use the inductive hypothesis we need that $J \mathbf{g}(\mathbf{q})$ is of full-rank and the tricky part of the proof is showing that this follows from $J \mathbf{f}(\mathbf{p})$ being of full rank.

It transpires that, subject to a permutation of the coordinates in \mathbb{R}^{n}, if you delete the last row and column of the matrix $J \mathbf{f}(\mathbf{p})$ you recover $J \mathbf{g}(\mathbf{q})$. So if $J \mathbf{f}(\mathbf{p})$ is of full-rank it has m linearly independent rows. If you remove one you get $m-1$ linearly independent rows in $J \mathbf{g}(\mathbf{q})$. This is as many rows as $J \mathbf{g}(\mathbf{q})$ has, and so $J \mathbf{g}(\mathbf{q})$ is of full rank.

The induction hypothesis will then give $\mathbf{g}(\mathbf{t})=\mathbf{0}$ if and only if $\mathbf{t}=$ $\left(\mathbf{v}^{T}, \mathbf{y}^{T}\right)^{T}$ with $\mathbf{v} \in \mathbb{R}^{n-m}$ and $\mathbf{y}=\phi_{2}(\mathbf{v})$ for some function $\phi_{2}: \mathbb{R}^{n-m} \rightarrow$ \mathbb{R}^{m-1}. That is, $\mathbf{t}=\left(\mathbf{v}^{T}, \phi_{2}(\mathbf{v})^{T}\right)^{T}$ with $\mathbf{v} \in \mathbb{R}^{n-m}$.

Working back we then find $\mathbf{f}(\mathbf{w})=\mathbf{0}$ if, and only if,

$$
\mathbf{w}=\left(\begin{array}{c}
\mathbf{v} \\
\phi_{2}(\mathbf{v}) \\
\phi_{1}\left(\binom{\mathbf{v}}{\phi_{2}(\mathbf{v})}\right.
\end{array}\right)
$$

with $\mathbf{v} \in \mathbb{R}^{n-m}$.
End of idea

Proof: Base Case

Within the proof of Theorem 1 we will need a Mean Value result for scalar valued functions of several variables. Recall the classical mean value result for $f:[a, b] \rightarrow \mathbb{R}$; if continuous on $[a, b]$ and differentiable on (a, b) then there exists $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$. What might be hoped for in the case of a scalar-valued function of several variables?

But first, recall the Chain Rule in the situation $\mathbb{R} \xrightarrow{\mathbf{g}} \mathbb{R}^{n} \xrightarrow{f} \mathbb{R}$, when subject to appropriate conditions on the functions,

$$
\begin{equation*}
\frac{d}{d t} f(\mathbf{g}(t))=\nabla f(\mathbf{g}(t)) \bullet \frac{d}{d t} \mathbf{g}(t) \tag{1}
\end{equation*}
$$

Theorem 2 Assume $f: U \rightarrow \mathbb{R}$ is a scalar-valued C^{1}-function on an open set $U \subseteq \mathbb{R}^{n}$. Let $\mathbf{x}, \mathbf{y} \in U$ be such that the straight line $\mathbf{x}+t(\mathbf{y}-\mathbf{x}), 0 \leq$ $t \leq 1$, between \mathbf{x} and \mathbf{y} lies totally within U. Then there exists a point \mathbf{w} on this straight line such that

$$
f(\mathbf{y})-f(\mathbf{x})=\nabla f(\mathbf{w}) \bullet(\mathbf{y}-\mathbf{x}) .
$$

Proof The straight line between \mathbf{x} and \mathbf{y} is represented by $\mathbf{x}+t(\mathbf{y}-\mathbf{x})$ for $0 \leq t \leq 1$. Define a scalar-valued function of one variable,

$$
\psi(t)=f(\mathbf{x}+t(\mathbf{y}-\mathbf{x})) \quad \text { for } \quad 0 \leq t \leq 1 .
$$

Apply the classical Mean Value Theorem to $\psi(t)$ to find $0<c<1$ such that

$$
\psi(1)-\psi(0)=\psi^{\prime}(c)(1-0), \quad \text { i.e. } \quad f(\mathbf{y})-f(\mathbf{x})=\psi^{\prime}(c) .
$$

Apply the Chain rule (1) to differentiate ψ :

$$
\frac{d}{d t} \psi(t)=\nabla f(\mathbf{x}+t(\mathbf{y}-\mathbf{x})) \bullet(\mathbf{y}-\mathbf{x})
$$

Thus

$$
\psi^{\prime}(c)=\nabla f(\mathbf{w}) \bullet(\mathbf{y}-\mathbf{x})
$$

where $\mathbf{w}=\mathbf{x}+c(\mathbf{y}-\mathbf{x})$. These combine to give required result.

Lemma 3 If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous at $\mathbf{a} \in \mathbb{R}^{n}$ and $g(\mathbf{a})>0$ then there exists $\delta>0$ such that if $\mathbf{x} \in B_{\delta}(\mathbf{a})$ then $g(\mathbf{x})>0$. Similarly, if $g(\mathbf{a})<0$ then there exists $\delta>0$ such that if $\mathbf{x} \in B_{\delta}(\mathbf{a})$ then $g(\mathbf{x})<0$.

Proof Identical to the $n=1$ result in MATH20101. If $g(\mathbf{a})>0$ choose $\varepsilon=g(\mathbf{a}) / 2>0$ in the definition of g is continuous at a to find the required δ. If $g(\mathbf{a})<0$ choose $\varepsilon=-g(\mathbf{a}) / 2>0$. See Appendix.

Proposition 4 (The $m=1$ case of the I.F.Th ${ }^{m}$) Suppose that $f: U \subseteq$ $\mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{1}-function on an open set U and there exists $\mathbf{p} \in U$ such that $f(\mathbf{p})=\mathbf{0}$ with partial derivative $d_{n} f(\mathbf{p}) \neq 0$.
Write $\mathbf{p}=\left(\mathbf{q}^{T}, c\right)^{T}$ where $\mathbf{q} \in \mathbb{R}^{n-1}$ and $c \in \mathbb{R}$. Then there exists

- an open set $A: \mathbf{q} \in A \subseteq \mathbb{R}^{n-1}$,
- $a C^{1}$-function $\phi: A \rightarrow \mathbb{R}$,
- an open set $D: \mathbf{p} \in D \subseteq U$,
such that for $\left(\mathbf{t}^{T}, y\right)^{T} \in D\left(\mathbf{t} \in \mathbb{R}^{n-1}, y \in \mathbb{R}\right)$,

$$
f\left(\binom{\mathbf{t}}{y}\right)=0 \quad \text { if, and only if, } \quad \mathbf{t} \in A, y=\phi(\mathbf{t}) .
$$

Further ϕ is a C^{1}-function on A and satisfies

$$
d_{j} \phi(\mathbf{t})=-\frac{d_{j} f\left(\left(\mathbf{t}^{T}, \phi(\mathbf{t})\right)^{T}\right)}{d_{n} f\left(\left(\mathbf{t}^{T}, \phi(\mathbf{t})\right)^{T}\right)},
$$

for all $\mathbf{t} \in A \subseteq \mathbb{R}^{n-1}, 1 \leq j \leq n-1$.
Proof Assume $d_{n} f(\mathbf{p})>0$. If $d_{n} f(\mathbf{p})<0$ replace f by $-f$ for $f(\mathbf{x})=0$ iff $-f(\mathbf{x})=0$.

The proof is split into three parts:

1. existence of ϕ and A;
2. ϕ is continuous in A and
3. ϕ is a C^{1}-function with the partial derivatives shown above.

Part 1. Existence of ϕ and A.
Since f is a C^{1}-function the derivatives $d_{i} f(\mathbf{x})$ are continuous. Also $d_{n} f(\mathbf{p})>0$ so we can apply Lemma 3 with $g=d_{n} f$ to find $\delta>0$ such that

$$
\begin{equation*}
\mathbf{x} \in B_{\delta}(\mathbf{p}) \Longrightarrow d_{n} f(\mathbf{x})>0 . \tag{2}
\end{equation*}
$$

Define a function of one variable,

$$
f_{\mathbf{q}}(y)=f\left(\binom{\mathbf{q}}{y}\right)=f\left(\binom{\mathbf{q}}{c}+\binom{\mathbf{0}}{y-c}\right)=f\left(\mathbf{p}+(y-c) \mathbf{e}_{n}\right) .
$$

Then

$$
\begin{aligned}
f_{\mathbf{q}}^{\prime}(y) & =\lim _{h \rightarrow 0} \frac{f\left(\mathbf{p}+(y+h-c) \mathbf{e}_{n}\right)-f\left(\mathbf{p}+(y-c) \mathbf{e}_{n}\right)}{h} \\
& =d_{n} f\left(\mathbf{p}+(y-c) \mathbf{e}_{n}\right) .
\end{aligned}
$$

If we now restrict to $|y-c|<\delta$ then $\mathbf{p}+(y-c) \mathbf{e}_{n} \in B_{\delta}(\mathbf{p})$ and so $f_{\mathbf{q}}^{\prime}(y)>0$ by (2). Since the derivative exists the function $f_{\mathbf{q}}$ is continuous and, since the derivative is >0, we have that $f_{\mathbf{q}}$ is strictly increasing for $|y-c|<\delta$.

Note that

$$
f_{\mathbf{q}}(c)=f\left(\binom{\mathbf{q}}{c}\right)=f(\mathbf{p})=0 .
$$

So, since $f_{\mathbf{q}}$ is increasing, we can choose c_{1} and $c_{2}: c-\delta<c_{1}<c<c_{2}<c+\delta$ (perhaps choosing the mid-way points) for which

$$
f_{\mathbf{q}}\left(c_{1}\right)<f_{\mathbf{q}}(c)=0<f_{\mathbf{q}}\left(c_{2}\right) .
$$

In particular $f_{\mathbf{q}}\left(c_{1}\right)$ is negative and $f_{\mathbf{q}}\left(c_{2}\right)$ positive.
Let

$$
\mathbf{a}_{1}=\binom{\mathbf{q}}{c_{1}}, \mathbf{a}_{2}=\binom{\mathbf{q}}{c_{2}} \in \mathbb{R}^{n} .
$$

Note that $\mathbf{a}_{1}, \mathbf{a}_{2} \in B_{\delta}(\mathbf{p})$.

Then

$$
f\left(\mathbf{a}_{1}\right)=f_{\mathbf{q}}\left(c_{1}\right)<0 \quad \text { and } \quad f\left(\mathbf{a}_{2}\right)=f_{\mathbf{q}}\left(c_{2}\right)>0,
$$

by definition of $f_{\mathbf{q}}$.
Since $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{1}-function in $B_{\delta}(\mathbf{p})$ it is continuous within the ball and thus at the two points \mathbf{a}_{1} and \mathbf{a}_{2}. This means that by Lemma 3 we can find $\delta_{1}, \delta_{2}>0$ such that

$$
\begin{equation*}
\mathbf{w} \in B_{\delta_{1}}\left(\mathbf{a}_{1}\right) \Longrightarrow f(\mathbf{w})<0 \quad \text { while } \quad \mathbf{w} \in B_{\delta_{2}}\left(\mathbf{a}_{2}\right) \Longrightarrow f(\mathbf{w})>0 . \tag{3}
\end{equation*}
$$

By choosing δ_{1} and δ_{2} sufficiently small we can ensure that $B_{\delta_{1}}\left(\mathbf{a}_{1}\right), B_{\delta_{2}}\left(\mathbf{a}_{2}\right) \subseteq$ $B_{\delta}(\mathbf{p})$.

Let $\delta_{0}=\min \left(\delta_{1}, \delta_{2}\right)>0$ and set $A=\widehat{B}_{\delta_{0}}(\mathbf{q})$, an open ball in \mathbb{R}^{n-1} (The $\widehat{\cdots}$ is to show it is a ball in $\mathbb{R}^{n-1} \operatorname{not} \mathbb{R}^{n}$.).

Let $D=A \times\left(c_{1}, c_{2}\right) \subseteq \mathbb{R}^{n}$. (Here $\left(c_{1}, c_{2}\right)$ is an interval, not an ordered pair, and you can think of D as a generalised cylinder)

Note that $\mathbf{q} \in \widehat{B}_{\delta_{0}}(\mathbf{q})$ and $c \in\left(c_{1}, c_{2}\right)$ together give

$$
\mathbf{p}=\binom{\mathbf{q}}{c} \in \widehat{B}_{\delta_{0}}(\mathbf{q}) \times\left(c_{1}, c_{2}\right)=A \times\left(c_{1}, c_{2}\right)=D .
$$

We repeat the above but with \mathbf{q} replaced by any $\mathbf{t} \in \widehat{B}_{\delta_{0}}(\mathbf{q})$. Define the function of one variable,

$$
f_{\mathbf{t}}(y)=f\left(\binom{\mathbf{t}}{y}\right), \quad c_{1} \leq c \leq c_{2} .
$$

Again we can show that with $\mathbf{w}_{0}=\left(\mathbf{t}^{T}, c\right)^{T}$,

$$
f_{\mathbf{t}}^{\prime}(y)=d_{n} f\left(\mathbf{w}_{0}+(y-c) \mathbf{e}_{n}\right)>0,
$$

since $\mathbf{w}_{0}+(y-c) \mathbf{e}_{n} \in B_{\delta}(\mathbf{p})$. Hence $f_{\mathbf{t}}$ is a strictly increasing continuous function.

Set

$$
\mathbf{w}_{1}=\binom{\mathbf{t}}{c_{1}} \quad \text { and } \quad \mathbf{w}_{2}=\binom{\mathbf{t}}{c_{2}} .
$$

Then

$$
\left|\mathbf{w}_{1}-\mathbf{a}_{1}\right|=\left|\binom{\mathbf{t}}{c_{1}}-\binom{\mathbf{q}}{c_{1}}\right|=|\mathbf{t}-\mathbf{q}|<\delta_{0} \leq \delta_{1}
$$

since $\mathbf{t} \in A=\widehat{B}_{\delta_{0}}(\mathbf{q})$. (Make sure you understand why the norm of vectors in \mathbb{R}^{n} is equal to the norm of vectors in \mathbb{R}^{n-1}. Perhaps write them as the root of the sum of squares of the coordinates.) Similarly, $\left|\mathbf{w}_{2}-\mathbf{a}_{2}\right|<\delta_{2}$.

Thus $\mathbf{w}_{1} \in B_{\delta_{1}}\left(\mathbf{a}_{1}\right)$ and $\mathbf{w}_{2} \in B_{\delta_{2}}\left(\mathbf{a}_{2}\right)$. Hence, by (3), $f\left(\mathbf{w}_{1}\right)<0$ and $f\left(\mathbf{w}_{2}\right)>0$. Thus $f_{\mathbf{t}}\left(c_{1}\right)=f\left(\mathbf{w}_{1}\right)<0$ and $f_{\mathbf{t}}\left(c_{2}\right)=f\left(\mathbf{w}_{2}\right)>0$. Therefore, by the Intermediate Value Theorem applied to $f_{\mathbf{t}}$ on the closed interval $\left[c_{1}, c_{2}\right]$ there exists $\xi: c_{1}<\xi<c_{2}$ such that $f_{\mathbf{t}}(\xi)=0$. Since f is strictly increasing this value c is unique. Define $\phi(\mathbf{t})=\xi$.

This can be repeated for each $\mathbf{t} \in A$ to define a function $\phi: A \rightarrow \mathbb{R}$.
Note that by definition, for $\xi=\phi(\mathbf{t})$,

$$
0=f_{\mathbf{t}}(\xi)=f\left(\binom{\mathbf{t}}{\xi}\right)=f\left(\binom{\mathbf{t}}{\phi(\mathbf{t})}\right)
$$

Part 2. ϕ is continuous in A.
Let $\mathbf{t} \in A \subseteq \mathbb{R}^{n-1}$ be given. We will show that $\lim _{\mathbf{s} \rightarrow \mathbf{0}} \phi(\mathbf{t}+\mathbf{s})=\phi(\mathbf{t})$.
Assume $\mathbf{s} \in \mathbb{R}^{n-1}$ is such that $\mathbf{t}+\mathbf{s} \in A$, possible since A is an open set.
Recall that $\phi(\mathbf{t}+\mathbf{s})$ is defined to satisfy

$$
0=f\left(\binom{\mathbf{t}+\mathbf{s}}{\phi(\mathbf{t}+\mathbf{s})}\right) .
$$

Let $\mathbf{s} \rightarrow \mathbf{0}$ and use the continuity of f to say

$$
\begin{aligned}
0 & =\lim _{\mathbf{s} \rightarrow \mathbf{0}} f\left(\binom{\mathbf{t}+\mathbf{s}}{\phi(\mathbf{t}+\mathbf{s})}\right)=f\left(\binom{\lim _{\mathbf{s} \rightarrow \mathbf{0}}(\mathbf{t}+\mathbf{s})}{\lim _{\mathbf{s} \rightarrow \mathbf{0}} \phi(\mathbf{t}+\mathbf{s})}\right) \\
& =f\left(\binom{\mathbf{t}}{\lim _{\mathbf{s} \rightarrow \mathbf{0}} \phi(\mathbf{t}+\mathbf{s})}\right) .
\end{aligned}
$$

Yet $\phi(\mathbf{t})$ is defined to satisfy

$$
0=f\left(\binom{\mathbf{t}}{\phi(\mathbf{t})}\right),
$$

and, for a given $\mathbf{t}, \phi(\mathbf{t})$ is unique, so we must have $\lim _{\mathbf{s} \rightarrow \mathbf{0}} \phi(\mathbf{t}+\mathbf{s})=\phi(\mathbf{t})$, i.e. ϕ is continuous at \mathbf{t} and thus on A.
(Never lose sight of the fact that the vectors here are in \mathbb{R}^{n-1}).
Part 3. ϕ is a C^{1}-function.
We will show that the partial derivatives $d_{j} \phi$ exist throughout $A=\widehat{B}_{\delta_{0}}(\mathbf{q})$ for each $1 \leq j \leq n-1$ and are continuous. This is the definition of a $C^{1}-$ function.

Let $\mathbf{t} \in \widehat{B}_{\delta_{0}}(\mathbf{q})$ be given. To calculate the j-th partial derivative $d_{j} \phi$ we need to look at the ratio

$$
\frac{\phi\left(\mathbf{t}+h \widehat{\mathbf{e}}_{j}\right)-\phi(\mathbf{t})}{h}
$$

as $h \rightarrow 0$. Here $\widehat{\mathbf{e}}_{j}$ is a standard basis vector of \mathbb{R}^{n-1} written with a ${ }^{\wedge}$ to differentiate it from basis vectors \mathbf{e}_{j} of \mathbb{R}^{n}. Since the ball $\widehat{B}_{\delta_{0}}(\mathbf{q})$ is an open set, we have $\mathbf{t}+h \widehat{\mathbf{e}}_{j} \in \widehat{B}_{\delta_{0}}(\mathbf{q})$ for $|h|<\eta$ with some $\eta>0$. By the definition of ϕ we have

$$
f\left(\binom{\mathbf{t}}{\phi(\mathbf{t})}\right)=0 \text { and } f\left(\binom{\mathbf{t}+h \widehat{\mathbf{e}}_{j}}{\phi\left(\mathbf{t}+h \widehat{\mathbf{e}}_{j}\right)}\right)=0 .
$$

Rewrite these with $y=\phi(\mathbf{t})$ so

$$
f\left(\binom{\mathbf{t}}{y}\right)=0 \quad \text { and } \quad f\left(\binom{\mathbf{t}+h \widehat{\mathbf{e}}_{j}}{y+u}\right)=0
$$

where $u=\phi\left(\mathbf{t}+h \widehat{\mathbf{e}}_{j}\right)-\phi(\mathbf{t})$. Subtracting equal values gives

$$
f\left(\binom{\mathbf{t}+h \widehat{\mathbf{e}}_{j}}{y+u}\right)-f\left(\binom{\mathbf{t}}{y}\right)=0 .
$$

Now apply the Mean Value Theorem, 2, but first note that the straight line between $\left(\mathbf{t}^{T}, y\right)^{T}$ and $\left(\left(\mathbf{t}+h \widehat{\mathbf{e}}_{j}\right)^{T}, y+u\right)^{T}$ is given by

$$
\left\{\binom{\mathbf{t}+s h \widehat{\mathbf{e}}_{j}}{y+s u}: 0 \leq s \leq 1\right\} .
$$

The difference between the ends of the line can be easily expressed in terms of basis vectors (of \mathbb{R}^{n}) as

$$
\binom{\mathbf{t}+h \widehat{\mathbf{e}}_{j}}{y+u}-\binom{\mathbf{t}}{y}=\binom{h \widehat{\mathbf{e}}_{j}}{u}=h \mathbf{e}_{j}+u \mathbf{e}_{n} .
$$

Aside Make sure this part is understood, how we go from basis vectors in \mathbb{R}^{n-1} to basis vectors in \mathbb{R}^{n} :

$$
\binom{h \widehat{\mathbf{e}}_{j}}{u}=\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \\
h \\
\vdots \\
0 \\
u
\end{array}\right)=h\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \\
1 \\
\vdots \\
\vdots \\
0
\end{array}\right)+u\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0 \\
\vdots \\
\vdots \\
1
\end{array}\right)=h \mathbf{e}_{j}+u \mathbf{e}_{n}
$$

End of Aside

The Mean Value Theorem asserts that there exists $0<\sigma<1$ such that

$$
\begin{equation*}
0=f\left(\binom{\mathbf{t}+h \widehat{\mathbf{e}}_{j}}{y+u}\right)-f\left(\binom{\mathbf{t}}{y}\right)=\nabla f(\mathbf{w}) \bullet\left(h \mathbf{e}_{j}+u \mathbf{e}_{n}\right), \tag{4}
\end{equation*}
$$

where $\mathbf{w}=\left(\left(\mathbf{t}+\sigma h \widehat{\mathbf{e}}_{j}\right)^{T}, y+\sigma u\right)^{T}$.
Next, $\nabla f(\mathbf{w}) \bullet \mathbf{e}_{j}$ is the j-th coordinate of $\nabla f(\mathbf{w})$, which is $\partial f(\mathbf{w}) / \partial x^{j}=$ $d_{j} f(\mathbf{w})$. Similarly, $\nabla f(\mathbf{w}) \bullet \mathbf{e}_{n}=d_{n} f(\mathbf{w})$. Hence (4) becomes

$$
0=h d_{j} f(\mathbf{w})+u d_{n} f(\mathbf{w}) .
$$

This rearranges as

$$
\frac{u}{h}=-\frac{d_{j} f(\mathbf{w})}{d_{n} f(\mathbf{w})}
$$

i.e.

$$
\frac{\phi\left(\mathbf{t}+h \widehat{\mathbf{e}}_{j}\right)-\phi(\mathbf{t})}{t}=-\frac{d_{j} f\left(\left(\left(\mathbf{t}+\sigma h \widehat{\mathbf{e}}_{j}\right)^{T}, y+\sigma u\right)^{T}\right)}{d_{n} f\left(\left(\left(\mathbf{t}+\sigma h \widehat{\mathbf{e}}_{j}\right)^{T}, y+\sigma u\right)^{T}\right)}
$$

Now let $h \rightarrow 0$. By the continuity of ϕ (part 2) we have

$$
u=\phi\left(\mathbf{t}+h \widehat{\mathbf{e}}_{j}\right)-\phi(\mathbf{t}) \longrightarrow \phi(\mathbf{t})-\phi(\mathbf{t})=0 .
$$

Thus

$$
\binom{\mathbf{t}+\sigma h \widehat{\mathbf{e}}_{j}}{y+\sigma u} \longrightarrow\binom{\mathbf{t}}{y}=\binom{\mathbf{t}}{\phi(\mathbf{t})},
$$

by definition of y, as $h \rightarrow 0$.
Now use the fact that f is a C^{1}-function which means that each $d_{k} f(\mathbf{x})$ is continuous, $1 \leq k \leq n$. With $k=j$ and n we deduce, (with the Quotient Rule for limits and the assumption that $\left.d_{n} f(\mathbf{a}) \neq 0\right)$

$$
\begin{align*}
\lim _{h \rightarrow 0} \frac{\phi\left(\mathbf{t}+h \widehat{\mathbf{e}}_{j}\right)-\phi(\mathbf{t})}{h} & =-\frac{\lim _{h \rightarrow 0} d_{j} f\left(\left(\left(\mathbf{t}+\sigma h \widehat{\mathbf{e}}_{j}\right)^{T}, y+\sigma u\right)^{T}\right)}{\lim _{h \rightarrow 0} d_{n} f\left(\left(\left(\mathbf{t}+\sigma h \widehat{\mathbf{e}}_{j}\right)^{T}, y+\sigma u\right)^{T}\right)} \\
& =-\frac{d_{j} f\left(\lim _{t \rightarrow 0}\left(\left(\mathbf{t}+\sigma h \widehat{\mathbf{e}}_{j}\right)^{T}, y+\sigma u\right)^{T}\right)}{d_{n} f\left(\lim _{t \rightarrow 0}\left(\left(\mathbf{t}+\sigma h \widehat{\mathbf{e}}_{j}\right)^{T}, y+\sigma u\right)^{T}\right)} \\
& =-\frac{d_{j} f\left(\left(\mathbf{t}^{T}, y\right)^{T}\right)}{d_{n} f\left(\left(\mathbf{t}^{T}, y\right)^{T}\right)} \tag{5}
\end{align*}
$$

That the limit exists means that $d_{j} \phi(\mathbf{t})$ exists, and since \mathbf{t} was arbitrary it exists on $\widehat{B}_{\delta_{0}}(\mathbf{q})$.

Further, since f is a C^{1}-function the right hand side of (5) is continuous, and thus $d_{j} \phi$ are continuous functions of \mathbf{t} for all $1 \leq j \leq n-1$.

Proof: Inductive Step

Proposition 5 The inductive step Suppose that the Implicit Function Theorem holds for any appropriate function $\mathbf{f}: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m-1}$, at $\mathbf{p} \in U$ with $J \mathbf{f}(\mathbf{p})$ of the form $\left(A \mid I_{m-1}\right)$, for any $n>m-1$. Then the Theorem holds for any appropriate function $\mathbf{f}: U \rightarrow \mathbb{R}^{m}$, at $\mathbf{p} \in U \subseteq \mathbb{R}^{n}$ with $J \mathbf{f}(\mathbf{p})$ of the form $\left(A \mid I_{m}\right)$, for any $n>m$.

Proof Suppose that $\mathbf{f}: U \rightarrow \mathbb{R}^{m}$ is a C^{1}-function on an open set $U \subseteq \mathbb{R}^{n}$, where $1 \leq m<n$ and there exists $\mathbf{p} \in U$ such that $\mathbf{f}(\mathbf{p})=\mathbf{0}$ and $J \mathbf{f}(\mathbf{p})=$ ($A \mid I_{m}$) for some $m \times(n-m)$ matrix A.

At this point it becomes notationally easier to consider elements of $\mathbf{w} \in$ \mathbb{R}^{n} as elements of $\mathbb{R}^{n-m} \times \mathbb{R}^{m}$, written as $\mathbf{w}=\left(\mathbf{v}^{T}, \mathbf{y}^{T}\right)^{T}$, where $\mathbf{v} \in \mathbb{R}^{n-m}$, $\mathbf{y} \in \mathbb{R}^{m}$. So

$$
\begin{equation*}
\mathbf{w}=\left(\mathbf{v}^{T}, \mathbf{y}^{T}\right)^{T}=\left(v^{1}, v^{2}, \ldots, v^{n-m}, y^{1}, y^{2}, \ldots, y^{m}\right)^{T} \tag{6}
\end{equation*}
$$

The identity matrix in $J \mathbf{f}(\mathbf{p})=\left(A \mid I_{m}\right)$ represents

$$
I_{m}=\left(\frac{\partial f^{i}(\mathbf{p})}{\partial y^{j}}\right)_{\substack{1 \leq i \leq m, 1 \leq j \leq m}},
$$

that is

$$
\frac{\partial f^{i}(\mathbf{p})}{\partial y^{j}}= \begin{cases}1 & \text { if } i=j \tag{7}\\ 0 & \text { if } i \neq j\end{cases}
$$

Apply Proposition 4 to the last scalar-valued component function f^{m} : $U \rightarrow \mathbb{R}, U \subseteq \mathbb{R}^{n}$. Write $\mathbf{p}=\left(\mathbf{q}^{T}, c\right)^{T}$ where $\mathbf{q} \in \mathbb{R}^{n-1}$ and $c \in \mathbb{R}$. Then there exists

- an open set $V_{1}: \mathbf{q} \in V_{1} \subseteq \mathbb{R}^{n-1}$,
- a C^{1}-function $\phi_{1}: V_{1} \rightarrow \mathbb{R}$,
- an open set $W_{1}: \mathbf{p} \in W_{1} \subseteq U$,
such that for $\left(\mathbf{t}^{T}, y\right)^{T} \in W_{1}\left(\mathbf{t} \in \mathbb{R}^{n-1}, y \in \mathbb{R}\right)$,

$$
f^{m}\left(\binom{\mathbf{t}}{y}\right)=0 \quad \text { if, and only if, } \quad \mathbf{t} \in V_{1}, y=\phi_{1}(\mathbf{t})
$$

In particular, $f^{m}(\mathbf{p})=0$ implies $\mathbf{q} \in V_{1}, c=\phi_{1}(\mathbf{q})$.
From the remaining components of \mathbf{f} define new functions on V_{1} by

$$
g^{i}(\mathbf{t})=f^{i}\left(\binom{\mathbf{t}}{\phi_{1}(\mathbf{t})}\right)
$$

for $\mathbf{t} \in V_{1}, 1 \leq i \leq m-1$. Define $\mathbf{g}: V_{1} \rightarrow \mathbb{R}^{m-1}$ by $\mathbf{g}=\left(g^{1}, g^{2}, \ldots, g^{m-1}\right)^{T}$. Then

$$
\mathbf{f}(\mathbf{w})=\mathbf{0} \Longleftrightarrow \mathbf{w}=\binom{\mathbf{t}}{\phi_{1}(\mathbf{t})} \text { and } \mathbf{g}(\mathbf{t})=\mathbf{0}
$$

Note that for each $1 \leq i \leq m-1$ we have

$$
g^{i}(\mathbf{q})=f^{i}\left(\binom{\mathbf{q}}{\phi_{1}(\mathbf{q})}\right)=f^{i}\left(\binom{\mathbf{q}}{c}\right)=f^{i}(\mathbf{p})=0 .
$$

since $\phi_{1}(\mathbf{q})=c$. Hence $\mathbf{g}(\mathbf{q})=0$.
The g^{i} are C^{1}-functions. To see this we note that for $1 \leq i \leq m-1$ we have a composition of functions

$$
\mathbf{t} \mapsto\binom{\mathbf{t}}{\phi_{1}(\mathbf{t})} \mapsto f^{i}\left(\binom{\mathbf{t}}{\phi_{1}(\mathbf{t})}\right) .
$$

Temporarily define

$$
\begin{equation*}
\mathbf{h}: V_{1} \subseteq \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n}: \mathbf{t} \mapsto\binom{\mathbf{t}}{\phi_{1}(\mathbf{t})}, \tag{8}
\end{equation*}
$$

in which case $g^{i}=f^{i} \circ \mathbf{h}$. Here \mathbf{h} is a function of $\mathbf{t} \in \mathbb{R}^{n-1}$, but think of \mathbf{f} as a function of $\mathbf{w} \in \mathbb{R}^{n}$. The Chain Rule then gives, for $1 \leq i \leq m-1,1 \leq j \leq n-1$,

$$
\begin{equation*}
\frac{\partial g^{i}}{\partial t^{j}}(\mathbf{t})=\frac{\partial f^{i} \circ \mathbf{h}}{\partial t^{j}}(\mathbf{t})=\sum_{k=1}^{n} \frac{\partial f^{i}}{\partial w^{k}}(\mathbf{h}(\mathbf{t})) \frac{\partial h^{k}}{\partial t^{j}}(\mathbf{t}), \tag{9}
\end{equation*}
$$

for $\mathbf{t} \in V_{1}$. From it's definition, (8), $h^{k}(\mathbf{t})=t^{k}$ if $1 \leq k \leq n-1$ while $h^{n}(\mathbf{t})=\phi_{1}(\mathbf{t})$. Thus, for $1 \leq k \leq n-1$,

$$
\frac{\partial h^{k}}{\partial t^{j}}(\mathbf{v})= \begin{cases}1 & \text { if } k=j \\ 0 & \text { if } k \neq j\end{cases}
$$

while, for $k=n$,

$$
\frac{\partial h^{n}}{\partial t^{j}}(\mathbf{t})=\frac{\partial \phi_{1}}{\partial t^{j}}(\mathbf{t})
$$

for any t .
Hence (9) reduces to

$$
\begin{equation*}
\frac{\partial g^{i}}{\partial t^{j}}(\mathbf{t})=\frac{\partial f^{i} \circ \mathbf{h}}{\partial t^{j}}(\mathbf{t})=\frac{\partial f^{i}}{\partial w^{j}}(\mathbf{h}(\mathbf{t}))+\frac{\partial f^{i}}{\partial w^{n}}(\mathbf{h}(\mathbf{t})) \frac{\partial \phi_{1}}{\partial t^{j}}(\mathbf{t}), \tag{10}
\end{equation*}
$$

for $1 \leq i \leq m-1,1 \leq j \leq n-1$.
Since f and ϕ_{1} are C^{1}-functions the derivatives on the right hand side of (10) are continuous, and this shows that the derivatives of \mathbf{g} are continuous, therefore \mathbf{g} is a C^{1}-function.
$J g(\mathbf{q})$ is of full-rank To see this, choose $\mathbf{v}=\mathbf{q}$ in (10), noting that $\mathbf{h}(\mathbf{q})=$ p. Recall from (6) that we found it notationally convenient to write \mathbf{w} in coordinates as $\left(t^{1}, t^{2}, \ldots, t^{n-m}, y^{1}, y^{2}, \ldots, y^{m}\right)$, so $w^{n}=y^{m}$. Then from (7)

$$
\frac{\partial f^{i}}{\partial w^{n}}(\mathbf{p})=\frac{\partial f^{i}}{\partial y^{m}}(\mathbf{p})=0
$$

since $i \neq m$. Thus (10) reduces to

$$
\frac{\partial g^{i}}{\partial t^{j}}(\mathbf{q})=\frac{\partial f^{i}}{\partial w^{j}}(\mathbf{p})
$$

for $1 \leq i \leq m-1,1 \leq j \leq n-1$.
These are elements of Jacobian matrices and equality shows that the Jacobian matrix $J \mathbf{g}(\mathbf{q})$ can be obtained from the matrix $J \mathbf{f}(\mathbf{p})$ by deleting the last row and column. Hence $J \mathbf{g}(\mathbf{q})=\left(A^{\prime} \mid I_{m-1}\right)$ for some $(m-1) \times(n-m)$ matrix A^{\prime} and in particular it is of full-rank.

Induction Thus $J \mathbf{g}(\mathbf{q})$ is of the required form to apply the inductive hypothesis. Write $\mathbf{q} \in \mathbb{R}^{n-1}$ as $\mathbf{q}=\left(\mathbf{q}_{1}^{T}, \mathbf{q}_{2}^{T}\right)^{T}$ where $\mathbf{q}_{1} \in \mathbb{R}^{n-m}$ and $\mathbf{q}_{2} \in \mathbb{R}^{m-1}$. By the inductive hypothesis applied to \mathbf{g} at \mathbf{q}, there exists

- an open set $V_{2}: \mathbf{q}_{1} \in V_{2} \subseteq \mathbb{R}^{n-m}$,
- a C^{1}-function $\phi_{2}: V_{2} \rightarrow \mathbb{R}^{m-1}$ and
- an open set $W_{2}: \mathbf{q} \in W_{2} \subseteq V_{1} \subseteq \mathbb{R}^{n-1}$
such for $\mathbf{t} \in W_{2}$, written as

$$
\mathbf{t}=\binom{\mathbf{v}}{\mathbf{k}}
$$

where $\mathbf{v} \in \mathbb{R}^{n-m}$ and $\mathbf{k} \in \mathbb{R}^{m-1}$,

$$
\mathbf{g}(\mathbf{t})=\mathbf{0} \quad \text { if, and only if, } \quad \mathbf{v} \in V_{2} \text { and } \mathbf{k}=\phi_{2}(\mathbf{v}) .
$$

Combining,

$$
\begin{aligned}
\mathbf{f}(\mathbf{w})=\mathbf{0} & \Longleftrightarrow \mathbf{w}=\binom{\mathbf{t}}{\phi_{1}(\mathbf{t})}, \mathbf{t} \in V_{1} \quad \text { and } \quad \mathbf{g}(\mathbf{t})=\mathbf{0} \\
& \Longleftrightarrow \mathbf{w}=\binom{\mathbf{t}}{\phi_{1}(\mathbf{t})} \text { and } \mathbf{t}=\binom{\mathbf{v}}{\phi_{2}(\mathbf{v})}, \mathbf{v} \in V_{2} .
\end{aligned}
$$

That is, $f(\mathbf{w})=0$ iff

$$
\mathbf{w}=\left(\begin{array}{c}
\mathbf{v} \\
\phi_{2}(\mathbf{v}) \\
\phi_{1}\left(\binom{\mathbf{v}}{\phi_{2}(\mathbf{v})}\right.
\end{array}\right),
$$

with $\mathbf{v} \in \mathbf{V}_{2}$. This can be written as required for the statement of the Theorem as

$$
\mathbf{w}=\binom{\mathbf{v}}{\phi(\mathbf{v})} \quad \text { with } \quad \phi(\mathbf{x})=\binom{\phi_{2}(\mathbf{v})}{\phi_{1}\binom{\mathbf{v}}{\phi_{2}(\mathbf{v})}} .
$$

Appendix for Section 4

Lemma 3 If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous at $\mathbf{a} \in \mathbb{R}^{n}$ and $g(\mathbf{a})>0$ then there exists $\delta>0$ such that if $\mathbf{x} \in B_{\delta}(\mathbf{a})$ then $g(\mathbf{x})>0$. Similarly, if $g(\mathbf{a})<0$ then there exists $\delta>0$ such that if $\mathbf{x} \in B_{\delta}(\mathbf{a})$ then $g(\mathbf{x})<0$.
Proof The assumption that $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous at $\mathbf{a} \in \mathbb{R}^{n}$ means

$$
\forall \varepsilon>0, \exists \delta>0, \forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \in B_{\delta}(\mathbf{a}) \Longrightarrow|g(\mathbf{x})-g(\mathbf{a})|<\varepsilon
$$

If $g(\mathbf{a})>0$ choose $\varepsilon=g(\mathbf{a}) / 2$ in the definition to find $\delta>0$ such that

$$
\begin{aligned}
\mathbf{x} \in B_{\delta}(\mathbf{a}) & \Longrightarrow|g(\mathbf{x})-g(\mathbf{a})|<\frac{g(\mathbf{a})}{2} \\
& \Longrightarrow \quad-\frac{g(\mathbf{a})}{2}<g(\mathbf{x})-g(\mathbf{a})<\frac{g(\mathbf{a})}{2} \\
& \Longrightarrow-\frac{g(\mathbf{a})}{2}<g(\mathbf{x})-g(\mathbf{a}) \\
& \Longrightarrow g(\mathbf{x})>\frac{g(\mathbf{a})}{2}>0
\end{aligned}
$$

If $g(\mathbf{a})<0$ choose $\varepsilon=-g(\mathbf{a}) / 2>0$ in the definition to find $\delta>0$ such that

$$
\begin{aligned}
\mathbf{x} \in B_{\delta}(\mathbf{a}) & \Longrightarrow|g(\mathbf{x})-g(\mathbf{a})|<-\frac{g(\mathbf{a})}{2} \\
& \Longrightarrow \frac{g(\mathbf{a})}{2}<g(\mathbf{x})-g(\mathbf{a})<-\frac{g(\mathbf{a})}{2} \\
& \Longrightarrow g(\mathbf{x})-g(\mathbf{a})<-\frac{g(\mathbf{a})}{2} \\
& \Longrightarrow g(\mathbf{x})<\frac{g(\mathbf{a})}{2}<0
\end{aligned}
$$

In the proof of Proposition 5 we might have given more details at one point. The Jacobian matrix of $\mathbf{f}(\mathbf{w})$ at $\mathbf{w}=\mathbf{p}$ is a matrix of partial derivatives

$$
\begin{equation*}
\left(\frac{\partial f^{i}(\mathbf{p})}{\partial w^{j}}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \tag{11}
\end{equation*}
$$

Yet at this point it becomes notationally easier to consider elements $\mathbf{w} \in \mathbb{R}^{n}$ as elements of $\mathbb{R}^{n-m} \times \mathbb{R}^{m}$, written as $\mathbf{w}=\left(\mathbf{v}^{T}, \mathbf{y}^{T}\right)^{T}$, where $\mathbf{v} \in \mathbb{R}^{n-m}, \mathbf{y} \in \mathbb{R}^{m}$. So

$$
\mathbf{w}=\binom{\mathbf{v}}{\mathbf{y}}=\left(v^{1}, v^{2}, \ldots, v^{n-m}, y^{1}, y^{2}, \ldots, y^{m}\right)^{T}
$$

In this notation, the matrix in (11) is written as

$$
\left(\left.\left(\frac{\partial f^{i}(\mathbf{p})}{\partial v^{j}}\right)_{\substack{1 \leq i \leq m, 1 \leq j \leq n-m}} \right\rvert\,\left(\frac{\partial f^{i}(\mathbf{p})}{\partial y^{j}}\right)_{\substack{1 \leq i \leq m, 1 \leq j \leq m}}\right) .
$$

Yet we are assuming $J \mathbf{f}(\mathbf{p})$ is of the form $\left(A \mid I_{m}\right)$, so

$$
\left(\frac{\partial f^{i}(\mathbf{p})}{\partial y^{j}}\right)_{\substack{1 \leq i \leq m, 1 \leq j \leq m}}=I_{m},
$$

that is

$$
\frac{\partial f^{i}(\mathbf{p})}{\partial y^{j}}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

