4 Proof of Implicit Function Theorem 2020-21

Notation We are looking at functions $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ with n > m. In the proof we will naturally get a decomposition $\mathbb{R}^n = \mathbb{R}^{n-m} \times \mathbb{R}^m$ and we write $\mathbf{x} \in \mathbb{R}^n$ as

$$\mathbf{x} = \begin{pmatrix} \mathbf{v} \\ \mathbf{y} \end{pmatrix} = (\mathbf{v}^T, \, \mathbf{y}^T)^T,$$

with $\mathbf{v} \in \mathbb{R}^{n-m}$ and $\mathbf{y} \in \mathbb{R}^m$. This means that $x^i = v^i$ for $1 \le i \le n-m$ while $x^i = y^{i-n+m}$ for $n-m+1 \le i \le n$.

We have previously stated and looked at consequences for surfaces of the result:

Theorem 1 Implicit Function Theorem. Suppose that $\mathbf{f} : U \to \mathbb{R}^m$ is a C^1 -function on an open set $U \subseteq \mathbb{R}^n$, where $1 \le m < n$; there exists $\mathbf{p} \in U$ such that $\mathbf{f}(\mathbf{p}) = \mathbf{0}$ and the Jacobian matrix $J\mathbf{f}(\mathbf{p})$ has full-rank m.

Suppose that the final m columns of the Jacobian matrix are linearly independent. Write

$$\mathbf{p} = \left(egin{array}{c} \mathbf{p}_0 \ \mathbf{p}_1 \end{array}
ight)$$

where $\mathbf{p}_0 \in \mathbb{R}^{n-m}$ and $\mathbf{p}_1 \in \mathbb{R}^m$.

Then there exists

- an open set $V : \mathbf{p}_0 \in V \subseteq \mathbb{R}^{n-m}$,
- a C^1 -function $\phi: V \to \mathbb{R}^m$ and
- an open set $W : \mathbf{p} \in W \subseteq U \subseteq \mathbb{R}^n$

such for $\mathbf{w} \in W$, written as

$$\mathbf{w} = \left(egin{array}{c} \mathbf{v} \ \mathbf{y} \end{array}
ight)$$

with $\mathbf{v} \in \mathbb{R}^{n-m}$ and $\mathbf{y} \in \mathbb{R}^m$, then

$$\mathbf{f}(\mathbf{w}) = \mathbf{0}$$
 if, and only if, $\mathbf{v} \in V$ and $\mathbf{y} = \phi(\mathbf{v})$.

Briefly, near a zero other zeros form a surface given by a graph.

The supposition that the final m columns of the Jacobian matrix $J\mathbf{f}(\mathbf{p})$ form an invertible matrix is satisfied in any given situation by, if necessary, a permutation of the coordinates in \mathbb{R}^n . See Section 3 Appendix.

But we can go further in demanding that $J\mathbf{f}(\mathbf{p}) = (A | I_m)$ for some $m \times (n-m)$ matrix A. See Section 3 Appendix.

Idea of proof. Induction on $m \ge 1$, the dimension of the image space.

The base case m = 1, is Proposition 4 below. In this case we have a scalarvalued function of many variables, $f : \mathbb{R}^n \to \mathbb{R}$. The Jacobian matrix $J\mathbf{f}(\mathbf{p})$ is an $n \times 1$ matrix, and the requirement that it is of full-rank simply means it is non-zero. By permuting the coordinates in \mathbb{R}^n if necessary we assume the **last** entry in $J\mathbf{f}(\mathbf{p})$, i.e. $d_n f(\mathbf{p})$, is non-zero.

We wish to reduce to the case of a scalar-valued function of *one* variable. This is done by looking at f on straight lines $(\mathbf{v}^T, y)^T$ where $\mathbf{v} \in \mathbb{R}^{n-1}$ is fixed and $y \in \mathbb{R}$ varies. Then define the scalar-valued function of one variable

$$f_{\mathbf{v}}(y) = f\left(\left(\begin{array}{c} \mathbf{v} \\ y \end{array}\right)\right),$$

so $f_{\mathbf{v}} : \mathbb{R} \to \mathbb{R}$ and we can use results from second year Real Analysis. In particular the Intermediate Value Theorem: if $g : [a, b] \to \mathbb{R}$ is continuous on [a, b] and g(a) < 0 < g(b) then there exists $c \in (a, b)$ such that g(c) = 0. The complications in the proof arise from showing that $f_{\mathbf{v}}$ takes both positive and negative values. But once we have shown this we conclude that for each \mathbf{v} there exists $y : f_{\mathbf{v}}(y) = 0$. Define the function $\phi_1 : \mathbb{R}^{n-1} \to \mathbb{R}$ by $\phi_1(\mathbf{v}) = y$.

The inductive step Assume the result of the Implicit Function Theorem holds for all appropriate $\mathbf{g} : \mathbb{R}^n \to \mathbb{R}^{m-1}$ whenever $n \ge m-1$.

Let $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$, with $n \ge m$. We wish to show that the result of the Implicit Function Theorem holds for \mathbf{f} .

We can write $\mathbf{f} = (f^1, ..., f^m)^T$. Apply Proposition 4 to the **last** coordinate function $f^m : \mathbb{R}^n \to \mathbb{R}$. This shows that $f^m (\mathbf{w}) = 0$ if and only if $\mathbf{w} = (\mathbf{t}^T, \phi_1(\mathbf{t}))^T$ for $\mathbf{t} \in \mathbb{R}^{n-1}$ and some function $\phi_1 : \mathbb{R}^{n-1} \to \mathbb{R}$.

Define $\mathbf{g}: \mathbb{R}^{n-1} \to \mathbb{R}^{m-1}$ by its m-1 component functions as

$$g^{i}\left(\mathbf{t}
ight)=f^{i}\left(\left(egin{array}{c}\mathbf{t}\\phi_{1}\left(\mathbf{t}
ight)
ight)
ight)$$

for $1 \leq i \leq m-1$ where $\mathbf{t} \in \mathbb{R}^{n-1}$.

Combining we find that $\mathbf{f}(\mathbf{w}) = \mathbf{0}$ iff

$$\mathbf{w} = \left(egin{array}{c} \mathbf{t} \ \phi_1\left(\mathbf{t}
ight) \end{array}
ight) ext{ for } \mathbf{t} \in \mathbb{R}^{n-1} ext{ and } \mathbf{g}\left(\mathbf{t}
ight) = \mathbf{0}.$$

In the assumptions of the theorem we are given a point $\mathbf{p} : f(\mathbf{p}) = 0$. So by what we have just shown, there exists $\mathbf{q} \in \mathbb{R}^{n-1} : \mathbf{p} = (\mathbf{q}^T, \phi_1(\mathbf{q}))^T$ and $\mathbf{g}(\mathbf{q}) = \mathbf{0}$.

Since $\mathbf{g} : \mathbb{R}^{n-1} \to \mathbb{R}^{m-1}$, i.e. the dimension of the image space is m-1, we would hope to apply the inductive hypothesis to \mathbf{g} at $\mathbf{q} \in \mathbb{R}^{n-1}$. To use the inductive hypothesis we need that $J\mathbf{g}(\mathbf{q})$ is of full-rank and the tricky part of the proof is showing that this follows from $J\mathbf{f}(\mathbf{p})$ being of full rank.

It transpires that, subject to a permutation of the coordinates in \mathbb{R}^n , if you delete the last row and column of the matrix $J\mathbf{f}(\mathbf{p})$ you recover $J\mathbf{g}(\mathbf{q})$. So if $J\mathbf{f}(\mathbf{p})$ is of full-rank it has m linearly independent rows. If you remove one you get m-1 linearly independent rows in $J\mathbf{g}(\mathbf{q})$. This is as many rows as $J\mathbf{g}(\mathbf{q})$ has, and so $J\mathbf{g}(\mathbf{q})$ is of full rank.

The induction hypothesis will then give $\mathbf{g}(\mathbf{t}) = \mathbf{0}$ if and only if $\mathbf{t} = (\mathbf{v}^T, \mathbf{y}^T)^T$ with $\mathbf{v} \in \mathbb{R}^{n-m}$ and $\mathbf{y} = \phi_2(\mathbf{v})$ for some function $\phi_2 : \mathbb{R}^{n-m} \to \mathbb{R}^{m-1}$. That is, $\mathbf{t} = (\mathbf{v}^T, \phi_2(\mathbf{v})^T)^T$ with $\mathbf{v} \in \mathbb{R}^{n-m}$.

Working back we then find $\mathbf{f}(\mathbf{w}) = \mathbf{0}$ if, and only if,

$$\mathbf{w} = \begin{pmatrix} \mathbf{v} \\ \phi_2(\mathbf{v}) \\ \\ \phi_1\left(\begin{pmatrix} \mathbf{v} \\ \phi_2(\mathbf{v}) \end{pmatrix}\right) \end{pmatrix}$$

with $\mathbf{v} \in \mathbb{R}^{n-m}$.

End of idea

Proof: Base Case

Within the proof of Theorem 1 we will need a Mean Value result for scalar valued functions of several variables. Recall the classical mean value result for $f : [a, b] \to \mathbb{R}$; if continuous on [a, b] and differentiable on (a, b) then there exists $c \in (a, b)$ such that f(b) - f(a) = f'(c)(b - a). What might be hoped for in the case of a scalar-valued function of several variables?

But first, recall the **Chain Rule** in the situation $\mathbb{R} \xrightarrow{\mathbf{g}} \mathbb{R}^n \xrightarrow{f} \mathbb{R}$, when subject to appropriate conditions on the functions,

$$\frac{d}{dt}f(\mathbf{g}(t)) = \nabla f(\mathbf{g}(t)) \bullet \frac{d}{dt}\mathbf{g}(t).$$
(1)

Theorem 2 Assume $f : U \to \mathbb{R}$ is a scalar-valued C^1 -function on an open set $U \subseteq \mathbb{R}^n$. Let $\mathbf{x}, \mathbf{y} \in U$ be such that the straight line $\mathbf{x} + t(\mathbf{y} - \mathbf{x}), 0 \leq t \leq 1$, between \mathbf{x} and \mathbf{y} lies totally within U. Then there exists a point \mathbf{w} on this straight line such that

$$f(\mathbf{y}) - f(\mathbf{x}) = \nabla f(\mathbf{w}) \bullet (\mathbf{y} - \mathbf{x}).$$

Proof The straight line between \mathbf{x} and \mathbf{y} is represented by $\mathbf{x} + t(\mathbf{y} - \mathbf{x})$ for $0 \le t \le 1$. Define a scalar-valued function of one variable,

$$\psi(t) = f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) \text{ for } 0 \le t \le 1.$$

Apply the classical Mean Value Theorem to $\psi(t)$ to find 0 < c < 1 such that

$$\psi(1) - \psi(0) = \psi'(c)(1-0)$$
, i.e. $f(\mathbf{y}) - f(\mathbf{x}) = \psi'(c)$.

Apply the Chain rule (1) to differentiate ψ :

$$\frac{d}{dt}\psi\left(t\right) = \nabla f\left(\mathbf{x} + t\left(\mathbf{y} - \mathbf{x}\right)\right) \bullet \left(\mathbf{y} - \mathbf{x}\right).$$

Thus

$$\psi'(c) = \nabla f(\mathbf{w}) \bullet (\mathbf{y} - \mathbf{x})$$

where $\mathbf{w} = \mathbf{x} + c (\mathbf{y} - \mathbf{x})$. These combine to give required result.

Lemma 3 If $g : \mathbb{R}^n \to \mathbb{R}$ is continuous at $\mathbf{a} \in \mathbb{R}^n$ and $g(\mathbf{a}) > 0$ then there exists $\delta > 0$ such that if $\mathbf{x} \in B_{\delta}(\mathbf{a})$ then $g(\mathbf{x}) > 0$. Similarly, if $g(\mathbf{a}) < 0$ then there exists $\delta > 0$ such that if $\mathbf{x} \in B_{\delta}(\mathbf{a})$ then $g(\mathbf{x}) < 0$.

Proof Identical to the n = 1 result in MATH20101. If $g(\mathbf{a}) > 0$ choose $\varepsilon = g(\mathbf{a})/2 > 0$ in the definition of g is continuous at \mathbf{a} to find the required δ . If $g(\mathbf{a}) < 0$ choose $\varepsilon = -g(\mathbf{a})/2 > 0$. See Appendix.

Proposition 4 (The m = 1 case of the I.F. Th^m) Suppose that $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$ is a C^1 -function on an open set U and there exists $\mathbf{p} \in U$ such that $f(\mathbf{p}) = \mathbf{0}$ with partial derivative $d_n f(\mathbf{p}) \neq 0$. Write $\mathbf{p} = (\mathbf{q}^T, c)^T$ where $\mathbf{q} \in \mathbb{R}^{n-1}$ and $c \in \mathbb{R}$. Then there exists

- an open set $A : \mathbf{q} \in A \subseteq \mathbb{R}^{n-1}$,
- a C^1 -function $\phi: A \to \mathbb{R}$,
- an open set $D : \mathbf{p} \in D \subseteq U$,

such that for $(\mathbf{t}^T, y)^T \in D$ $(\mathbf{t} \in \mathbb{R}^{n-1}, y \in \mathbb{R})$,

$$f\left(\begin{pmatrix} \mathbf{t} \\ y \end{pmatrix}\right) = 0$$
 if, and only if, $\mathbf{t} \in A, y = \phi(\mathbf{t})$.

Further ϕ is a C¹-function on A and satisfies

$$d_{j}\phi\left(\mathbf{t}\right) = -\frac{d_{j}f\left(\left(\mathbf{t}^{T}, \phi\left(\mathbf{t}\right)\right)^{T}\right)}{d_{n}f\left(\left(\mathbf{t}^{T}, \phi\left(\mathbf{t}\right)\right)^{T}\right)},$$

for all $\mathbf{t} \in A \subseteq \mathbb{R}^{n-1}$, $1 \leq j \leq n-1$.

Proof Assume $d_n f(\mathbf{p}) > 0$. If $d_n f(\mathbf{p}) < 0$ replace f by -f for $f(\mathbf{x}) = 0$ iff $-f(\mathbf{x}) = 0$.

The proof is split into three parts:

- 1. existence of ϕ and A;
- 2. ϕ is continuous in A and
- 3. ϕ is a C^1 -function with the partial derivatives shown above.

Part 1. Existence of ϕ and A.

Since f is a C^{1} -function the derivatives $d_{i}f(\mathbf{x})$ are continuous. Also $d_n f(\mathbf{p}) > 0$ so we can apply Lemma 3 with $g = d_n f$ to find $\delta > 0$ such that

$$\mathbf{x} \in B_{\delta}(\mathbf{p}) \implies d_n f(\mathbf{x}) > 0.$$
 (2)

Define a function of one variable,

$$f_{\mathbf{q}}(y) = f\left(\begin{pmatrix} \mathbf{q} \\ y \end{pmatrix}\right) = f\left(\begin{pmatrix} \mathbf{q} \\ c \end{pmatrix} + \begin{pmatrix} \mathbf{0} \\ y-c \end{pmatrix}\right) = f\left(\mathbf{p} + (y-c)\mathbf{e}_n\right).$$

Then

$$f'_{\mathbf{q}}(y) = \lim_{h \to 0} \frac{f(\mathbf{p} + (y + h - c) \mathbf{e}_n) - f(\mathbf{p} + (y - c) \mathbf{e}_n)}{h}$$
$$= d_n f(\mathbf{p} + (y - c) \mathbf{e}_n).$$

If we now restrict to $|y - c| < \delta$ then $\mathbf{p} + (y - c) \mathbf{e}_n \in B_{\delta}(\mathbf{p})$ and so $f'_{\mathbf{q}}(y) > 0$ by (2). Since the derivative exists the function $f_{\mathbf{q}}$ is continuous and, since the derivative is > 0, we have that $f_{\mathbf{q}}$ is strictly increasing for $|y - c| < \delta$.

Note that

$$f_{\mathbf{q}}(c) = f\left(\begin{pmatrix} \mathbf{q} \\ c \end{pmatrix}\right) = f(\mathbf{p}) = 0$$

So, since $f_{\mathbf{q}}$ is increasing, we can choose c_1 and $c_2 : c - \delta < c_1 < c < c_2 < c + \delta$ (perhaps choosing the mid-way points) for which

$$f_{\mathbf{q}}(c_1) < f_{\mathbf{q}}(c) = 0 < f_{\mathbf{q}}(c_2).$$

In particular $f_{\mathbf{q}}(c_1)$ is negative and $f_{\mathbf{q}}(c_2)$ positive.

Let

$$\mathbf{a}_1 = \begin{pmatrix} \mathbf{q} \\ c_1 \end{pmatrix}, \ \mathbf{a}_2 = \begin{pmatrix} \mathbf{q} \\ c_2 \end{pmatrix} \in \mathbb{R}^n.$$

Note that $\mathbf{a}_1, \mathbf{a}_2 \in B_{\delta}(\mathbf{p})$.

Then

$$f(\mathbf{a}_1) = f_{\mathbf{q}}(c_1) < 0$$
 and $f(\mathbf{a}_2) = f_{\mathbf{q}}(c_2) > 0$,

by definition of $f_{\mathbf{q}}$.

Since $f : \mathbb{R}^n \to \mathbb{R}$ is a C^1 -function in $B_{\delta}(\mathbf{p})$ it is continuous within the ball and thus at the two points \mathbf{a}_1 and \mathbf{a}_2 . This means that by Lemma 3 we can find $\delta_1, \delta_2 > 0$ such that

$$\mathbf{w} \in B_{\delta_1}(\mathbf{a}_1) \Longrightarrow f(\mathbf{w}) < 0 \quad \text{while} \quad \mathbf{w} \in B_{\delta_2}(\mathbf{a}_2) \Longrightarrow f(\mathbf{w}) > 0.$$
 (3)

By choosing δ_1 and δ_2 sufficiently small we can ensure that $B_{\delta_1}(\mathbf{a}_1)$, $B_{\delta_2}(\mathbf{a}_2) \subseteq B_{\delta}(\mathbf{p})$.

Let $\delta_0 = \min(\delta_1, \delta_2) > 0$ and set $A = \widehat{B}_{\delta_0}(\mathbf{q})$, an open ball in \mathbb{R}^{n-1} (The $\widehat{\cdots}$ is to show it is a ball in \mathbb{R}^{n-1} not \mathbb{R}^n .).

Let $D = A \times (c_1, c_2) \subseteq \mathbb{R}^n$. (Here (c_1, c_2) is an interval, not an ordered pair, and you can think of D as a generalised cylinder)

Note that $\mathbf{q} \in \widehat{B}_{\delta_0}(\mathbf{q})$ and $c \in (c_1, c_2)$ together give

$$\mathbf{p} = \begin{pmatrix} \mathbf{q} \\ c \end{pmatrix} \in \widehat{B}_{\delta_0}(\mathbf{q}) \times (c_1, c_2) = A \times (c_1, c_2) = D.$$

We repeat the above but with **q** replaced by any $\mathbf{t} \in \widehat{B}_{\delta_0}(\mathbf{q})$. Define the function of one variable,

$$f_{\mathbf{t}}(y) = f\left(\begin{pmatrix} \mathbf{t} \\ y \end{pmatrix}\right), \quad c_1 \le c \le c_2.$$

Again we can show that with $\mathbf{w}_0 = (\mathbf{t}^T, c)^T$,

$$f'_{\mathbf{t}}(y) = d_n f\left(\mathbf{w}_0 + (y - c)\,\mathbf{e}_n\right) > 0,$$

since $\mathbf{w}_0 + (y - c) \mathbf{e}_n \in B_{\delta}(\mathbf{p})$. Hence f_t is a strictly increasing continuous function.

Set

$$\mathbf{w}_1 = \begin{pmatrix} \mathbf{t} \\ c_1 \end{pmatrix}$$
 and $\mathbf{w}_2 = \begin{pmatrix} \mathbf{t} \\ c_2 \end{pmatrix}$.

Then

$$|\mathbf{w}_1 - \mathbf{a}_1| = \left| \begin{pmatrix} \mathbf{t} \\ c_1 \end{pmatrix} - \begin{pmatrix} \mathbf{q} \\ c_1 \end{pmatrix} \right| = |\mathbf{t} - \mathbf{q}| < \delta_0 \le \delta_1,$$

since $\mathbf{t} \in A = \widehat{B}_{\delta_0}(\mathbf{q})$. (Make sure you understand why the norm of vectors in \mathbb{R}^n is equal to the norm of vectors in \mathbb{R}^{n-1} . Perhaps write them as the root of the sum of squares of the coordinates.) Similarly, $|\mathbf{w}_2 - \mathbf{a}_2| < \delta_2$.

Thus $\mathbf{w}_1 \in B_{\delta_1}(\mathbf{a}_1)$ and $\mathbf{w}_2 \in B_{\delta_2}(\mathbf{a}_2)$. Hence, by (3), $f(\mathbf{w}_1) < 0$ and $f(\mathbf{w}_2) > 0$. Thus $f_{\mathbf{t}}(c_1) = f(\mathbf{w}_1) < 0$ and $f_{\mathbf{t}}(c_2) = f(\mathbf{w}_2) > 0$. Therefore, by the Intermediate Value Theorem applied to $f_{\mathbf{t}}$ on the closed interval $[c_1, c_2]$ there exists $\xi : c_1 < \xi < c_2$ such that $f_{\mathbf{t}}(\xi) = 0$. Since f is strictly increasing this value c is unique. Define $\phi(\mathbf{t}) = \xi$.

This can be repeated for each $\mathbf{t} \in A$ to define a function $\phi : A \to \mathbb{R}$.

Note that by definition, for $\xi = \phi(\mathbf{t})$,

$$0 = f_{\mathbf{t}}(\xi) = f\left(\begin{pmatrix} \mathbf{t} \\ \xi \end{pmatrix}\right) = f\left(\begin{pmatrix} \mathbf{t} \\ \phi(\mathbf{t}) \end{pmatrix}\right)$$

Part 2. ϕ is continuous in A.

Let $\mathbf{t} \in A \subseteq \mathbb{R}^{n-1}$ be given. We will show that $\lim_{\mathbf{s}\to\mathbf{0}} \phi(\mathbf{t}+\mathbf{s}) = \phi(\mathbf{t})$. Assume $\mathbf{s} \in \mathbb{R}^{n-1}$ is such that $\mathbf{t} + \mathbf{s} \in A$, possible since A is an open set.

Recall that $\phi(\mathbf{t} + \mathbf{s})$ is defined to satisfy

$$0 = f\left(\left(\begin{array}{c} \mathbf{t} + \mathbf{s} \\ \phi \left(\mathbf{t} + \mathbf{s} \right) \end{array} \right) \right).$$

Let $\mathbf{s} \to \mathbf{0}$ and use the continuity of f to say

$$0 = \lim_{\mathbf{s}\to\mathbf{0}} f\left(\begin{pmatrix}\mathbf{t}+\mathbf{s}\\\phi(\mathbf{t}+\mathbf{s})\end{pmatrix}\right) = f\left(\begin{pmatrix}\lim_{\mathbf{s}\to\mathbf{0}} (\mathbf{t}+\mathbf{s})\\\lim_{\mathbf{s}\to\mathbf{0}} \phi(\mathbf{t}+\mathbf{s})\end{pmatrix}\right)$$
$$= f\left(\begin{pmatrix}\mathbf{t}\\\lim_{\mathbf{s}\to\mathbf{0}} \phi(\mathbf{t}+\mathbf{s})\end{pmatrix}\right).$$

Yet $\phi(\mathbf{t})$ is defined to satisfy

$$0 = f\left(\left(\begin{array}{c} \mathbf{t} \\ \phi(\mathbf{t}) \end{array}\right)\right),$$

and, for a given \mathbf{t} , $\phi(\mathbf{t})$ is *unique*, so we must have $\lim_{\mathbf{s}\to\mathbf{0}}\phi(\mathbf{t}+\mathbf{s}) = \phi(\mathbf{t})$, i.e. ϕ is continuous at \mathbf{t} and thus on A.

(Never lose sight of the fact that the vectors here are in \mathbb{R}^{n-1}).

Part 3. ϕ is a C^1 -function.

We will show that the partial derivatives $d_j \phi$ exist throughout $A = \widehat{B}_{\delta_0}(\mathbf{q})$ for each $1 \leq j \leq n-1$ and are *continuous*. This is the definition of a C^1 -function.

Let $\mathbf{t} \in \widehat{B}_{\delta_0}(\mathbf{q})$ be given. To calculate the *j*-th partial derivative $d_j \phi$ we need to look at the ratio

$$\frac{\phi\left(\mathbf{t}+h\widehat{\mathbf{e}}_{j}\right)-\phi\left(\mathbf{t}\right)}{h}$$

as $h \to 0$. Here $\hat{\mathbf{e}}_j$ is a standard basis vector of \mathbb{R}^{n-1} written with a $\hat{\mathbf{e}}_j$ to differentiate it from basis vectors \mathbf{e}_j of \mathbb{R}^n . Since the ball $\hat{B}_{\delta_0}(\mathbf{q})$ is an open set, we have $\mathbf{t} + h\hat{\mathbf{e}}_j \in \hat{B}_{\delta_0}(\mathbf{q})$ for $|h| < \eta$ with some $\eta > 0$. By the definition of ϕ we have

$$f\left(\begin{pmatrix} \mathbf{t} \\ \phi(\mathbf{t}) \end{pmatrix}\right) = 0 \text{ and } f\left(\begin{pmatrix} \mathbf{t} + h\widehat{\mathbf{e}}_j \\ \phi(\mathbf{t} + h\widehat{\mathbf{e}}_j) \end{pmatrix}\right) = 0.$$

Rewrite these with $y = \phi(\mathbf{t})$ so

$$f\left(\begin{pmatrix} \mathbf{t} \\ y \end{pmatrix}\right) = 0 \text{ and } f\left(\begin{pmatrix} \mathbf{t} + h\widehat{\mathbf{e}}_j \\ y + u \end{pmatrix}\right) = 0,$$

where $u = \phi \left(\mathbf{t} + h \widehat{\mathbf{e}}_{j} \right) - \phi \left(\mathbf{t} \right)$. Subtracting equal values gives

$$f\left(\left(\begin{array}{c}\mathbf{t}+h\widehat{\mathbf{e}}_{j}\\y+u\end{array}\right)\right)-f\left(\left(\begin{array}{c}\mathbf{t}\\y\end{array}\right)\right)=0.$$

Now apply the Mean Value Theorem, 2, but first note that the straight line between $(\mathbf{t}^T, y)^T$ and $((\mathbf{t} + h\widehat{\mathbf{e}}_j)^T, y + u)^T$ is given by

$$\left\{ \begin{pmatrix} \mathbf{t} + sh\widehat{\mathbf{e}}_j \\ y + su \end{pmatrix} : 0 \le s \le 1 \right\}.$$

The difference between the ends of the line can be easily expressed in terms of basis vectors (of \mathbb{R}^n) as

$$\begin{pmatrix} \mathbf{t} + h\widehat{\mathbf{e}}_j \\ y + u \end{pmatrix} - \begin{pmatrix} \mathbf{t} \\ y \end{pmatrix} = \begin{pmatrix} h\widehat{\mathbf{e}}_j \\ u \end{pmatrix} = h\mathbf{e}_j + u\mathbf{e}_n$$

Aside Make sure this part is understood, how we go from basis vectors in \mathbb{R}^{n-1} to basis vectors in \mathbb{R}^n :

$$\begin{pmatrix} h\widehat{\mathbf{e}}_{j} \\ u \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ h \\ \vdots \\ 0 \end{pmatrix} = h \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} + u \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \\ \vdots \\ 1 \end{pmatrix} = h\mathbf{e}_{j} + u\mathbf{e}_{n}.$$

End of Aside

The Mean Value Theorem asserts that there exists $0 < \sigma < 1$ such that

$$0 = f\left(\begin{pmatrix} \mathbf{t} + h\widehat{\mathbf{e}}_j \\ y + u \end{pmatrix}\right) - f\left(\begin{pmatrix} \mathbf{t} \\ y \end{pmatrix}\right) = \nabla f(\mathbf{w}) \bullet (h\mathbf{e}_j + u\mathbf{e}_n), \quad (4)$$

where $\mathbf{w} = \left((\mathbf{t} + \sigma h \widehat{\mathbf{e}}_j)^T, y + \sigma u \right)^T$.

Next, $\nabla f(\mathbf{w}) \bullet \mathbf{e}_j$ is the *j*-th coordinate of $\nabla f(\mathbf{w})$, which is $\partial f(\mathbf{w}) / \partial x^j = d_j f(\mathbf{w})$. Similarly, $\nabla f(\mathbf{w}) \bullet \mathbf{e}_n = d_n f(\mathbf{w})$. Hence (4) becomes

$$0 = hd_j f(\mathbf{w}) + ud_n f(\mathbf{w}) \,.$$

This rearranges as

$$\frac{u}{h} = -\frac{d_j f(\mathbf{w})}{d_n f(\mathbf{w})},$$

i.e.

$$\frac{\phi\left(\mathbf{t}+h\widehat{\mathbf{e}}_{j}\right)-\phi\left(\mathbf{t}\right)}{t}=-\frac{d_{j}f\left(\left(\left(\mathbf{t}+\sigma h\widehat{\mathbf{e}}_{j}\right)^{T},y+\sigma u\right)^{T}\right)}{d_{n}f\left(\left(\left(\mathbf{t}+\sigma h\widehat{\mathbf{e}}_{j}\right)^{T},y+\sigma u\right)^{T}\right)}.$$

Now let $h \to 0$. By the continuity of ϕ (part 2) we have

$$u = \phi\left(\mathbf{t} + h\widehat{\mathbf{e}}_{j}\right) - \phi\left(\mathbf{t}\right) \longrightarrow \phi\left(\mathbf{t}\right) - \phi\left(\mathbf{t}\right) = 0.$$

Thus

$$\left(\begin{array}{c} \mathbf{t} + \sigma h \widehat{\mathbf{e}}_{j} \\ y + \sigma u \end{array}\right) \longrightarrow \left(\begin{array}{c} \mathbf{t} \\ y \end{array}\right) = \left(\begin{array}{c} \mathbf{t} \\ \phi(\mathbf{t}) \end{array}\right),$$

by definition of y, as $h \to 0$.

Now use the fact that f is a C^1 -function which means that each $d_k f(\mathbf{x})$ is continuous, $1 \leq k \leq n$. With k = j and n we deduce, (with the Quotient Rule for limits and the assumption that $d_n f(\mathbf{a}) \neq 0$)

$$\lim_{h \to 0} \frac{\phi(\mathbf{t} + h\widehat{\mathbf{e}}_{j}) - \phi(\mathbf{t})}{h} = -\frac{\lim_{h \to 0} d_{j}f\left(\left((\mathbf{t} + \sigma h\widehat{\mathbf{e}}_{j})^{T}, y + \sigma u\right)^{T}\right)\right)}{\lim_{h \to 0} d_{n}f\left(\left((\mathbf{t} + \sigma h\widehat{\mathbf{e}}_{j})^{T}, y + \sigma u\right)^{T}\right)\right)}$$

$$= -\frac{d_{j}f\left(\lim_{t \to 0} \left((\mathbf{t} + \sigma h\widehat{\mathbf{e}}_{j})^{T}, y + \sigma u\right)^{T}\right)}{d_{n}f\left(\lim_{t \to 0} \left((\mathbf{t} + \sigma h\widehat{\mathbf{e}}_{j})^{T}, y + \sigma u\right)^{T}\right)\right)}$$

$$= -\frac{d_{j}f\left((\mathbf{t}^{T}, y)^{T}\right)}{d_{n}f\left((\mathbf{t}^{T}, y)^{T}\right)}.$$
(5)

That the limit exists means that $d_j\phi(\mathbf{t})$ exists, and since \mathbf{t} was arbitrary it exists on $\widehat{B}_{\delta_0}(\mathbf{q})$.

Further, since f is a C^1 -function the right hand side of (5) is continuous, and thus $d_j\phi$ are continuous functions of **t** for all $1 \le j \le n-1$.

Proof: Inductive Step

Proposition 5 The inductive step Suppose that the Implicit Function Theorem holds for any appropriate function $\mathbf{f} : U \subseteq \mathbb{R}^n \to \mathbb{R}^{m-1}$, at $\mathbf{p} \in U$ with $J\mathbf{f}(\mathbf{p})$ of the form $(A \mid I_{m-1})$, for any n > m - 1. Then the Theorem holds for any appropriate function $\mathbf{f} : U \to \mathbb{R}^m$, at $\mathbf{p} \in U \subseteq \mathbb{R}^n$ with $J\mathbf{f}(\mathbf{p})$ of the form $(A \mid I_m)$, for any n > m.

Proof Suppose that $\mathbf{f}: U \to \mathbb{R}^m$ is a C^1 -function on an open set $U \subseteq \mathbb{R}^n$, where $1 \leq m < n$ and there exists $\mathbf{p} \in U$ such that $\mathbf{f}(\mathbf{p}) = \mathbf{0}$ and $J\mathbf{f}(\mathbf{p}) = (A \mid I_m)$ for some $m \times (n-m)$ matrix A.

At this point it becomes notationally easier to consider elements of $\mathbf{w} \in \mathbb{R}^n$ as elements of $\mathbb{R}^{n-m} \times \mathbb{R}^m$, written as $\mathbf{w} = (\mathbf{v}^T, \mathbf{y}^T)^T$, where $\mathbf{v} \in \mathbb{R}^{n-m}$, $\mathbf{y} \in \mathbb{R}^m$. So

$$\mathbf{w} = \left(\mathbf{v}^{T}, \mathbf{y}^{T}\right)^{T} = \left(v^{1}, v^{2}, ..., v^{n-m}, y^{1}, y^{2}, ..., y^{m}\right)^{T}.$$
 (6)

The identity matrix in $J\mathbf{f}(\mathbf{p}) = (A \mid I_m)$ represents

$$I_{m} = \left(\frac{\partial f^{i}\left(\mathbf{p}\right)}{\partial y^{j}}\right)_{\substack{1 \le i \le m, \\ 1 \le j \le m}}$$

that is

$$\frac{\partial f^{i}(\mathbf{p})}{\partial y^{j}} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$
(7)

,

Apply Proposition 4 to the last scalar-valued component function f^m : $U \to \mathbb{R}, U \subseteq \mathbb{R}^n$. Write $\mathbf{p} = (\mathbf{q}^T, c)^T$ where $\mathbf{q} \in \mathbb{R}^{n-1}$ and $c \in \mathbb{R}$. Then there exists

- an open set $V_1 : \mathbf{q} \in V_1 \subseteq \mathbb{R}^{n-1}$,
- a C^1 -function $\phi_1: V_1 \to \mathbb{R}$,
- an open set $W_1 : \mathbf{p} \in W_1 \subseteq U$,

such that for $(\mathbf{t}^T, y)^T \in W_1$ $(\mathbf{t} \in \mathbb{R}^{n-1}, y \in \mathbb{R}),$

$$f^m\left(\begin{pmatrix} \mathbf{t} \\ y \end{pmatrix}\right) = 0$$
 if, and only if, $\mathbf{t} \in V_1, \ y = \phi_1(\mathbf{t}).$

In particular, $f^{m}(\mathbf{p}) = 0$ implies $\mathbf{q} \in V_{1}, c = \phi_{1}(\mathbf{q}).$

From the remaining components of \mathbf{f} define new functions on V_1 by

$$g^{i}(\mathbf{t}) = f^{i}\left(\left(\begin{array}{c} \mathbf{t} \\ \phi_{1}(\mathbf{t}) \end{array}\right)\right),$$

for $\mathbf{t} \in V_1, \ 1 \le i \le m-1$. Define $\mathbf{g} : V_1 \to \mathbb{R}^{m-1}$ by $\mathbf{g} = (g^1, g^2, ..., g^{m-1})^T$. Then

$$\mathbf{f}(\mathbf{w}) = \mathbf{0} \iff \mathbf{w} = \left(egin{array}{c} \mathbf{t} \ \phi_1\left(\mathbf{t}
ight) \end{array}
ight) ext{ and } \mathbf{g}\left(\mathbf{t}
ight) = \mathbf{0}.$$

Note that for each $1 \le i \le m-1$ we have

$$g^{i}(\mathbf{q}) = f^{i}\left(\left(\begin{array}{c} \mathbf{q} \\ \phi_{1}(\mathbf{q}) \end{array}\right)\right) = f^{i}\left(\left(\begin{array}{c} \mathbf{q} \\ c \end{array}\right)\right) = f^{i}(\mathbf{p}) = 0.$$

since $\phi_1(\mathbf{q}) = c$. Hence $\mathbf{g}(\mathbf{q}) = 0$.

The g^i are C^1 -functions. To see this we note that for $1 \le i \le m-1$ we have a composition of functions

$$\mathbf{t} \mapsto \left(\begin{array}{c} \mathbf{t} \\ \phi_1(\mathbf{t}) \end{array}\right) \mapsto f^i\left(\left(\begin{array}{c} \mathbf{t} \\ \phi_1(\mathbf{t}) \end{array}\right)\right).$$

Temporarily define

$$\mathbf{h}: V_1 \subseteq \mathbb{R}^{n-1} \to \mathbb{R}^n: \mathbf{t} \mapsto \left(\begin{array}{c} \mathbf{t} \\ \phi_1(\mathbf{t}) \end{array}\right),\tag{8}$$

in which case $g^i = f^i \circ \mathbf{h}$. Here **h** is a function of $\mathbf{t} \in \mathbb{R}^{n-1}$, but think of **f** as a function of $\mathbf{w} \in \mathbb{R}^n$. The Chain Rule then gives, for $1 \leq i \leq m-1, 1 \leq j \leq n-1$,

$$\frac{\partial g^{i}}{\partial t^{j}}\left(\mathbf{t}\right) = \frac{\partial f^{i} \circ \mathbf{h}}{\partial t^{j}}\left(\mathbf{t}\right) = \sum_{k=1}^{n} \frac{\partial f^{i}}{\partial w^{k}}\left(\mathbf{h}\left(\mathbf{t}\right)\right) \frac{\partial h^{k}}{\partial t^{j}}\left(\mathbf{t}\right),\tag{9}$$

for $\mathbf{t} \in V_1$. From it's definition, (8), $h^k(\mathbf{t}) = t^k$ if $1 \le k \le n-1$ while $h^n(\mathbf{t}) = \phi_1(\mathbf{t})$. Thus, for $1 \le k \le n-1$,

$$\frac{\partial h^k}{\partial t^j} \left(\mathbf{v} \right) = \begin{cases} 1 & \text{if } k = j \\ 0 & \text{if } k \neq j, \end{cases}$$

while, for k = n,

$$\frac{\partial h^{n}}{\partial t^{j}}\left(\mathbf{t}\right) = \frac{\partial \phi_{1}}{\partial t^{j}}\left(\mathbf{t}\right),$$

for any **t**.

Hence (9) reduces to

$$\frac{\partial g^{i}}{\partial t^{j}}\left(\mathbf{t}\right) = \frac{\partial f^{i} \circ \mathbf{h}}{\partial t^{j}}\left(\mathbf{t}\right) = \frac{\partial f^{i}}{\partial w^{j}}\left(\mathbf{h}\left(\mathbf{t}\right)\right) + \frac{\partial f^{i}}{\partial w^{n}}\left(\mathbf{h}\left(\mathbf{t}\right)\right)\frac{\partial \phi_{1}}{\partial t^{j}}\left(\mathbf{t}\right), \quad (10)$$

for $1 \le i \le m-1, 1 \le j \le n-1$.

Since f and ϕ_1 are C^1 -functions the derivatives on the right hand side of (10) are continuous, and this shows that the derivatives of \mathbf{g} are continuous, therefore \mathbf{g} is a C^1 -function.

 $Jg(\mathbf{q})$ is of full-rank To see this, choose $\mathbf{v} = \mathbf{q}$ in (10), noting that $\mathbf{h}(\mathbf{q}) = \mathbf{p}$. Recall from (6) that we found it notationally convenient to write \mathbf{w} in coordinates as $(t^1, t^2, ..., t^{n-m}, y^1, y^2, ..., y^m)$, so $w^n = y^m$. Then from (7)

$$\frac{\partial f^{i}}{\partial w^{n}}\left(\mathbf{p}\right) = \frac{\partial f^{i}}{\partial y^{m}}\left(\mathbf{p}\right) = 0$$

since $i \neq m$. Thus (10) reduces to

$$\frac{\partial g^{i}}{\partial t^{j}}\left(\mathbf{q}\right) = \frac{\partial f^{i}}{\partial w^{j}}\left(\mathbf{p}\right),$$

for $1 \le i \le m - 1, 1 \le j \le n - 1$.

These are elements of Jacobian matrices and equality shows that the Jacobian matrix $J\mathbf{g}(\mathbf{q})$ can be obtained from the matrix $J\mathbf{f}(\mathbf{p})$ by deleting the last row and column. Hence $J\mathbf{g}(\mathbf{q}) = (A' | I_{m-1})$ for some $(m-1) \times (n-m)$ matrix A' and in particular it is of full-rank.

Induction Thus $J\mathbf{g}(\mathbf{q})$ is of the required form to apply the inductive hypothesis. Write $\mathbf{q} \in \mathbb{R}^{n-1}$ as $\mathbf{q} = (\mathbf{q}_1^T, \mathbf{q}_2^T)^T$ where $\mathbf{q}_1 \in \mathbb{R}^{n-m}$ and $\mathbf{q}_2 \in \mathbb{R}^{m-1}$. By the inductive hypothesis applied to \mathbf{g} at \mathbf{q} , there exists

- an open set $V_2 : \mathbf{q}_1 \in V_2 \subseteq \mathbb{R}^{n-m}$,
- a $C^1\text{-function}\ \phi_2:V_2\to \mathbb{R}^{m-1}$ and
- an open set $W_2 : \mathbf{q} \in W_2 \subseteq V_1 \subseteq \mathbb{R}^{n-1}$

such for $\mathbf{t} \in W_2$, written as

$$\mathbf{t} = \left(egin{array}{c} \mathbf{v} \ \mathbf{k} \end{array}
ight),$$

where $\mathbf{v} \in \mathbb{R}^{n-m}$ and $\mathbf{k} \in \mathbb{R}^{m-1}$,

$$\mathbf{g}(\mathbf{t}) = \mathbf{0}$$
 if, and only if, $\mathbf{v} \in V_2$ and $\mathbf{k} = \phi_2(\mathbf{v})$.

Combining,

$$\mathbf{f}(\mathbf{w}) = \mathbf{0} \iff \mathbf{w} = \begin{pmatrix} \mathbf{t} \\ \phi_1(\mathbf{t}) \end{pmatrix}, \ \mathbf{t} \in V_1 \quad \text{and} \quad \mathbf{g}(\mathbf{t}) = \mathbf{0},$$
$$\iff \mathbf{w} = \begin{pmatrix} \mathbf{t} \\ \phi_1(\mathbf{t}) \end{pmatrix} \quad \text{and} \quad \mathbf{t} = \begin{pmatrix} \mathbf{v} \\ \phi_2(\mathbf{v}) \end{pmatrix}, \ \mathbf{v} \in V_2.$$

That is, $f(\mathbf{w}) = 0$ iff

$$\mathbf{w} = \begin{pmatrix} \mathbf{v} & & \\ \phi_2(\mathbf{v}) & & \\ \phi_1\left(\begin{pmatrix} \mathbf{v} \\ \phi_2(\mathbf{v}) \end{pmatrix}\right) & \end{pmatrix},$$

with $\mathbf{v} \in \mathbf{V}_2$. This can be written as required for the statement of the Theorem as

$$\mathbf{w} = \begin{pmatrix} \mathbf{v} \\ \phi(\mathbf{v}) \end{pmatrix} \text{ with } \phi(\mathbf{x}) = \begin{pmatrix} \phi_2(\mathbf{v}) \\ \\ \phi_1\left(\begin{pmatrix} \mathbf{v} \\ \phi_2(\mathbf{v}) \end{pmatrix}\right) \end{pmatrix}.$$

Appendix for Section 4

Lemma 3 If $g : \mathbb{R}^n \to \mathbb{R}$ is continuous at $\mathbf{a} \in \mathbb{R}^n$ and $g(\mathbf{a}) > 0$ then there exists $\delta > 0$ such that if $\mathbf{x} \in B_{\delta}(\mathbf{a})$ then $g(\mathbf{x}) > 0$. Similarly, if $g(\mathbf{a}) < 0$ then there exists $\delta > 0$ such that if $\mathbf{x} \in B_{\delta}(\mathbf{a})$ then $g(\mathbf{x}) < 0$.

Proof The assumption that $g: \mathbb{R}^n \to \mathbb{R}$ is continuous at $\mathbf{a} \in \mathbb{R}^n$ means

 $\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall \mathbf{x} \in \mathbb{R}^{n}, \ \mathbf{x} \in B_{\delta}\left(\mathbf{a}\right) \Longrightarrow |g\left(\mathbf{x}\right) - g\left(\mathbf{a}\right)| < \varepsilon.$

If $g(\mathbf{a}) > 0$ choose $\varepsilon = g(\mathbf{a})/2$ in the definition to find $\delta > 0$ such that

$$\begin{aligned} \mathbf{x} \in B_{\delta}\left(\mathbf{a}\right) &\implies |g\left(\mathbf{x}\right) - g\left(\mathbf{a}\right)| < \frac{g\left(\mathbf{a}\right)}{2} \\ \implies & -\frac{g\left(\mathbf{a}\right)}{2} < g\left(\mathbf{x}\right) - g\left(\mathbf{a}\right) < \frac{g\left(\mathbf{a}\right)}{2} \\ \implies & -\frac{g\left(\mathbf{a}\right)}{2} < g\left(\mathbf{x}\right) - g\left(\mathbf{a}\right) \\ \implies & g\left(\mathbf{x}\right) > \frac{g\left(\mathbf{a}\right)}{2} > 0. \end{aligned}$$

If $g(\mathbf{a}) < 0$ choose $\varepsilon = -g(\mathbf{a})/2 > 0$ in the definition to find $\delta > 0$ such that

$$\mathbf{x} \in B_{\delta}(\mathbf{a}) \implies |g(\mathbf{x}) - g(\mathbf{a})| < -\frac{g(\mathbf{a})}{2}$$
$$\implies \frac{g(\mathbf{a})}{2} < g(\mathbf{x}) - g(\mathbf{a}) < -\frac{g(\mathbf{a})}{2}$$
$$\implies g(\mathbf{x}) - g(\mathbf{a}) < -\frac{g(\mathbf{a})}{2}$$
$$\implies g(\mathbf{x}) < \frac{g(\mathbf{a})}{2} < 0.$$

In the proof of Proposition 5 we might have given more details at one point. The Jacobian matrix of $\mathbf{f}(\mathbf{w})$ at $\mathbf{w} = \mathbf{p}$ is a matrix of partial derivatives

$$\left(\frac{\partial f^{i}\left(\mathbf{p}\right)}{\partial w^{j}}\right)_{\substack{1\leq i\leq m,\\1\leq j\leq n}}.$$
(11)

Yet at this point it becomes notationally easier to consider elements $\mathbf{w} \in \mathbb{R}^n$ as elements of $\mathbb{R}^{n-m} \times \mathbb{R}^m$, written as $\mathbf{w} = (\mathbf{v}^T, \mathbf{y}^T)^T$, where $\mathbf{v} \in \mathbb{R}^{n-m}, \mathbf{y} \in \mathbb{R}^m$. So

$$\mathbf{w} = \begin{pmatrix} \mathbf{v} \\ \mathbf{y} \end{pmatrix} = (v^1, v^2, \dots, v^{n-m}, y^1, y^2, \dots, y^m)^T$$

In this notation, the matrix in (11) is written as

$$\left(\left(\frac{\partial f^{i}\left(\mathbf{p}\right)}{\partial v^{j}} \right)_{\substack{1 \leq i \leq m, \\ 1 \leq j \leq n-m}} \left| \left(\frac{\partial f^{i}\left(\mathbf{p}\right)}{\partial y^{j}} \right)_{\substack{1 \leq i \leq m, \\ 1 \leq j \leq m}} \right).$$

Yet we are assuming $J\mathbf{f}(\mathbf{p})$ is of the form $(A \mid I_m)$, so

$$\left(\frac{\partial f^{i}\left(\mathbf{p}\right)}{\partial y^{j}}\right)_{\substack{1\leq i\leq m,\\1\leq j\leq m}}=I_{m},$$

that is

$$\frac{\partial f^{i}\left(\mathbf{p}\right)}{\partial y^{j}} = \left\{ \begin{array}{ll} 1 & \text{if } i=j\\ 0 & \text{if } i\neq j. \end{array} \right.$$